Electrostatic basis of valence selectivity in cationic channels.
نویسندگان
چکیده
We examine how a variety of cationic channels discriminate between ions of differing charge. We construct models of the KcsA potassium channel, voltage gated sodium channel and L-type calcium channel, and show that they all conduct monovalent cations, but that only the calcium channel conducts divalent cations. In the KcsA and sodium channels divalent ions block the channel and prevent any further conduction. We demonstrate that in each case, this discrimination and some of the more complex conductance properties of the channels is a consequence of the electrostatic interaction of the ions with the charges in the channel protein. The KcsA and sodium channels bind divalent ions strongly enough that they cannot be displaced by other ions and thereby block the channel. On the other hand, the calcium channel binds them less strongly such that they can be destabilized by the repulsion of another incoming divalent ion, but not by the lesser repulsion from monovalent ions.
منابع مشابه
Thermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin
In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...
متن کاملEnergetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.
We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction ba...
متن کاملDiffusion, exclusion, and specific binding in a large channel: a study of OmpF selectivity inversion.
We find that moderate cationic selectivity of the general bacterial porin OmpF in sodium and potassium chloride solutions is inversed to anionic selectivity in concentrated solutions of barium, calcium, nickel, and magnesium chlorides. To understand the origin of this phenomenon, we consider several factors, which include the binding of divalent cations, electrostatic and steric exclusion of di...
متن کاملThermodynamic investigation of the interaction between Mono-s-chloroTriazinyl MCT Reactive Dyes and cetylpyridinium chloride inaqueous solution
The interactions two synthetic triazinyl reactive dyes Mono-s-chloro Triazinyl reactive dyes DI and DII with the cationic surfactant N-hexadecyl pyridinium chloride CPC were studied using a conductometric method in 25, 30, 35, 40 and 45ºC. The equilibrium constants and other thermodynamic parameters for the ion pair formation were calculated on the basis of a theoretical model using the data ob...
متن کاملAn electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels
Slow inactivation of Kv1 channels involves conformational changes near the selectivity filter. We examine such changes in Shaker channels lacking fast inactivation by considering the consequences of mutating two residues, T449 just external to the selectivity filter and V438 in the pore helix near the bottom of the selectivity filter. Single mutant T449F channels with the native V438 inactivate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1711 1 شماره
صفحات -
تاریخ انتشار 2005